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Potential energy surfaces play an important role in studying theoretical chemistry. In
the present paper, we first use the dynamical symmetry group G = U1(4) ⊗ U2(4) ⊗
U3(4) to get the expression of the potential energy surface for the stable linear asym-
metric tetratomic molecules with the stretching vibration and the dissociation energy.
The method can be applied to a number of stable tetratomic molecules. As an example
we use the method to calculate the potential energy surface of C2HD.
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1. Introduction

It has been shown that the Lie algebraic approach is a useful method to
treat the molecular problems in recent years. Some comprehensive reviews of
the algebraic approach have recently been published [1–3]. Since Iachello, Levine
and others have successfully treated molecular rovibrational states using Lie alge-
braic approach [1,2,4,9,10,21], many researchers [4–8] extend the hybrid alge-
braic method to treat molecular rovibrational states. On the other hand, some
researchers are interested in treating time-dependent problems and statistical
problems using lie algebraic method [11–14].

As an active method, the analytical potential energy surfaces of small poly-
atomic molecules can be obtained by using molecular algebraic Hamiltonian,
since this algebraic Hamiltonian can reproduce the molecular rovibrational states
well. Cooper [15] recently derived diatomic potential functions using algebraic
theory. Levine and coworkers [16,17] obtained the potential-energy surfaces of
the triatomic molecules using U(2) algebra. Shiliang Ding and coworkers [18]
obtained the potential energy surface of triatomic molecular with U1(4) ⊗ U2(4).
So far, there are few workers to calculate the potential energy surface of the
tetratomic molecular with the algebraic method because of its complication. In
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this paper, we use algebraic Hamiltonian to calculate potential energy surface of
the stable tetratomic molecules. In each bond we introduce a U(4) group, so that
we use U1(4) ⊗ U2(4) ⊗ U3(4) group to describe the tetratomic molecules. With
the Hamiltonian classified, we get the potential energy surface and the dissoci-
ation energy of the tetratomic molecules. The coordinates introduced in taking
the semiclassical limit need not be the bond distance; they must be therefore sub-
jected to a correlated transformation. In this paper, we have chosen the simplest
transformation that yields the correct results in the asymptotic limit (i.e., when
one or three bonds are broken). The method we proposed could be applied to
any algebraic Hamiltonian, that is to say the potential energy surface that we
will propose is a generic one for stable linear asymmetric tetratomic molecules.
We shall not discuss the bending motion, which is the subject of the work in pro-
gress.

In the present paper, first of all, we review the algebraic Hamiltonian of
the tetratomic molecules by using group U (4). Then we get the potential energy
surface of the stable tetratomic molecules and the dissociation energy. Finally,
the results of calculation for molecules C2HD is presented. What’s more, we can
get the potential energy surface of the other stable linear asymmetric tetratomic
molecules.

2. The brief review of the Hamiltonian of the linear asymmetry tetratomic
molecule

2.1. The expression of the potential energy surface

For a tetratomic molecule, there are three bonds, which are related to the
groups U1(4), U2(4) and U3(4), respectively. The expression of the C2HD is in
figure 6. So the symmetric group of a tetratomic molecule is

G = U1(4) ⊗ U2(4) ⊗ U3(4). (1a)

Hence, the dynamical symmetric subgroup chain can be written in local group
and normal group as follows:

U1(4) ⊗ U2(4) ⊗ U3(4) ⊃ SO1(4) ⊗ SO2(4) ⊗ SO3(4) ⊃ SO12(4) ⊗ SO3(4) ⊃
SO123(4) ⊃ SO123(3) ⊃ SO123(2), (1b)

U1(4) ⊗ U2(4) ⊗ U3(4) ⊃ U12(4) ⊗ U3(4) ⊃ U123(4) ⊃
SO123(4) ⊃ SO123(2) ⊃ SO123(2). (1c)

From the knowledge of the Lie algebra [1], The Hamiltonian of a linear asym-
metry tetratomic molecule can be written as:
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Ĥ total = E0 + A1Ĉ1 + A2Ĉ2 + A3Ĉ3 + A12Ĉ12 + A123Ĉ123 + λ12M̂12

+λ23M̂23 + λ13M̂13, (2)

where Ĉ1, Ĉ2, Ĉ3, Ĉ12,Ĉ123 are defined as [1]; A1, A2, A3, A12,A123,λ12, λ23, λ13 are
expansion coefficients, they can be obtained by fitting the spectroscopic data.
Ĉi = D̂2

i + Ĵ 2
i (i = 1, 2, 3), Ĉ12 = (D̂1 + D̂2)

2 + (Ĵ1 + Ĵ2)
2, M12, M13, M23 and

ˆC123 = (D̂1 + D̂2 + D̂3)
2 + (Ĵ1 + Ĵ2 + Ĵ3)

2 are the Majorana operator. From
[18], we know:

Ji = Niqi × pi, Di = Ni(2 − p2
i − q2

i )
1/2qi,

M̂ij = 1
4
NiNj(2 − p2

j − q2
j )(q

2
i + p2

i ) + 1
4
NiNj(2 − p2

i − q2
i )(q

2
j + p2

i )

−1
2
NiNj [(2 − p2

i − q2
i )(2 − p2

j − q2
j )]

1/2,

(qi · qj + pi · pj) + 1
2
NiNj [(qi × qj − pi × pj)

2 + (qi × pj + pi × qj )
2].(3)

Inserting equation (3) into equation (2), and defining the kinetic energy operator
pi as zero, we can get the classical Hamiltonian of the linear asymmetric tetra-
tomic molecules

Hcl(q1, q2, q3, θ1, θ2; p1 = 0, p2 = 0, p3 = 0)

= Â1{N2
1 (2 − q2

1 )q2
1 } + Â2{N2

2 (2 − q2
2 )q2

2 } + Â3{N2
3 (2 − q2

3 )q2
3 }

+Â12

{
N2

1 (2 − q2
1 )q2

1 + N2
2 (2 − q2

2 )q2
2 + 2N1N2

√
(2 − q2

1 )(2 − q2
2 )q1 · q2

}

+Â123

{
N2

1 (2 − q2
1 )q2

1 + N2
3 (2 − q2

3 )q2
3 + N2

2 (2 − q2
2 )q2

2
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√
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2 )q1 · q2 + 2N1N3

√
(2 − q2

1 )(2 − q2
3 )q1 · q3

+2N2N3

√
(2 − q2
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}
+ λ12
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2 − 1

2
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2 )q1 · q2

+1
2
N1N2(q1 × q2)
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+ λ13

{
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3 )q2
1 + 1

4
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3
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If we only consider the stretching motion, we can get the potential energy
surface with the classical coordinates

V (q1, q2, q3) = Â1{N2
1 (2 − q2

1 )q2
1 } + Â2{N2

2 (2 − q2
2 )q2

2 } + Â3{N2
3 (2 − q2

3 )q2
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√
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2 )q1q2

}
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3 + N2

2 (2 − q2
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4
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3

−1
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. (5)

We assumed the transformation between bond coordinates and classical
coordinate qi as [18]

q2
i = e−βi(ri−rie)(i = 1, 2, 3), (6)

where ri is the ith bond coordinate, rie is the equilibrium bond length, and βi is
a parameter. Substituting (6) into (5), we can get the potential energy surface in
the form of the internal molecular coordinates r1, r2, r3.

2.2. The dissociation energy

It is obvious that at {q1 = 0, q2 = 0, q3 = 0}, that is, {r1 → r1∞, r2 →
r2∞, r3 → r3∞. The solution corresponds to the case in which the three bonds
are completely broken, that is to say, the molecule is dissociated. The potential
energy is to zero. At r1 → r1e, r2 → r2e, r3 → r3e, that is q1 = 1, q2 = 1 and
q3 = 1. It shows that the potential energy surface has the global minimum, and
the well depth at the minimum of the potential is

De = −(A1N
2
1 + A2N

2
2 + A3N

2
3 + A12(N1 + N2)

2 + A123(N1 + N2 + N3)
2). (7)
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And, the other stationary points of V (r1, r2, r3) are at, r1 → r1∞, r2 → r2∞,
r3 = r3e or at r1 → r1∞, r2 = r2∞, r3 → r3e and r1 = r1∞, r2 → r2∞,
r3 → r3∞ which are the three valleys where two bonds are fully extended and
another bond is at its equilibrium position. The depth of the ith valley is D̂ei :

De1 = −(A1N
2
1 + A12N

2
1 + A123N

2
1 + 0.5λ12N1N2 + 0.5λ13N1N3),

De2 = −(A2N
2
2 + A12N

2
2 + A123N

2
2 + 0.5λ12N1N2 + 0.5λ23N2N3),

De3 = −(A3N
2
3 + A123N

2
3 + 0.5λ23N3N2 + 0.5λ13N1N3). (8)

The potential energy difference between the stable tetratomic molecules and
either exit valley is thus De − Dei .

At this point all the parameters in the Hamiltonian are determined from
the fitting of the spectrum. Hence the X2YZ vibration spectrum can be used to
determine the Hamiltonian and the potential energy surface. From equation (8),
we get the dissociation energy of the X2YZ.

3. Applications

We have educed the potential energy surface of C2HD by using the Ham-
iltonian given by equation (2). The parameters required to reproduce the poten-
tial energy surface are given in table 1. They are got by fitting the Hamiltonian.
The fitting spectroscopic data and the observed spectroscopic data are listed in
table 2. Table 1 also provides the dissociation energies of the tetratomic mol-
ecules as predicted by the potential (5). We know that the dissociation energy
of CH [20] is 3.648 (eV) when the three bonds are at their equilibrium, here we
get the dissociation energy of CH is 3.7058 (eV). The difference is caused by the
influence of CD. The value of βi is calculated using the formula [19]:

βi =
√

2π2cuiA

Die

wie. (9)

Here wie, uiA, Die has the usual meaning as in reference [19].
If we take q2 as a constant, we can take the molecules as triatomic mole-

cules, then we can get the dissociation energy of the triatomic molecule.

(1) {q2 = 1}, this is the equilibrium position, we can get the dissociation
energy:

De = −(A1N
2
1 + A2N

2
2 + A3N

2
3 + A12(N1 + N2)

2

+A123(N1 + N2 + N3)
2) for C2HD is 20.8397 eV,

De1 = −(A1N
2
1 + A2N

2
2 + A12(N1 + N2)

2 + A123(N
2
1 + N2

2 + N1N2)

+0.25λ12N1N2+0.5λ13N1N3+0.5λ23N2N3) for CH is 8.6233 eV,

De3 = −(A12N
2
2 + A2N

2
2 + A3N

2
3 + A123(N

2
2 + N2

3 + N2N3)+0.5λ12N1N2

+0.5λ13N1N3 + 0.25λ23N2N3) or CCD is 15.7463 eV. (10)
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Table 1
The fitting parameters and dissociation energy of C2HD.

C2HD This paper Ref. [20]

N1 43
N2 61
N3 137
A1 −0.17982587(+2)

A2 −0.10075547(+2)

A3 −0.33740922(+1)

A12 −0.73353190(0)

A123 −0.10663047(1)

λ12 0.30309053(+1)

λ13 −0.78271471(−4)

λ23 0.45338175(−3)

r1e 1.1198(Å)

r2e 1.118(Å)

r3e 1.3117(Å)

De 20.8397 (eV)
De1 3.7058 (eV) 3.648 (eV)
De2 4.3086 (eV)
De3 10.3325 (eV)

All parameters are in cm−1, except N1, N2, N3 which is
dimensionless, and r1e, r2e, r3e are in Å.

(2) {q2 = 1.2}, which is corresponding to that r < re, the dissociation
energy is:

De = − (
A1N

2
1 + 0.8064A2N

2
2 + A3N

2
3 + A12(N

2
1 + 0.8064N2

2

+1.796N1N2) + A3N
2
3 + A123(N

2
1 + 0.8064N2

2 + 0.897998N1N2

+N1N3 + N2
3 + 0.897998N2N3)

)
, or C2HD is 19.79 eV,

De1 = −(A1N
2
1 + 0.8064A2N

2
2 + A123(N

2
1 + 0.8064N2

2 + 0.897998N1N2)

+A12(N
2
1 + 0.8064N2

2 + 1.796N1N2) + 0.275501λ12N1N2

+0.5λ13N1N3 + 0.72λ23N2N3), or CH is 8.44791 eV,

De3 = −(0.8064A12N
2
2 + 0.8064A2N

2
2 + A123(N

2
3 + 0.8064N2

2

+0.897998N2N2) + A3N
2
3 + 0.72λ12N1N2 + 0.5λ13N1N3

+0.275501λ23N2N3), or CCD is 14.4871 eV. (11)

(3) {q2 = 0.9}, which is corresponding to that r > re, we also can get the
dissociation energy:

De = − (
A1N

2
1 + 0.9639A2N

2
2 + A3N

2
3 + A12(N

2
1 + 0.9639N2

2

+1.96357N1N2) + A3N
2
3 + A123(N

2
1 + 0.9639N2

2 + 0.981784N1N2

+N1N3 + N2
3 + 0.981784N2N3)

)
, or C2HD is 20.6442 eV,
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Table 2
Comparison of observed and calculated levels for C2HD (cm−1).

v1, v2, v3 v
l4
4 , v

l5
5 Exp. Cal. � δ

0 0 0 2000 1033.93 1031.23 −2.70 −0.261
0 0 0 1−111 1198.33 1191.66 −6.67 −0.557
0 0 0 0020 1342.23 1341.13 −1.10 −0.082
0 1 0 0000 1853.78 1852.49 −1.29 −0.069
1 0 0 0000 3335.61 3329.82 −5.79 −0.174
0 1 0 1−111 3046.98 3035.59 −11.39 −0.374
0 0 1 2000 3587.01 3594.43 7.42 0.207
0 0 1 111−1 3766.18 3760.98 −5.20 −0.138
0 0 1 0020 3920.22 3915.13 −5.09 −0.130
1 0 0 2000 4361.99 4352.47 −9.52 −0.218
0 1 1 0000 4415.84 4415.72 −0.12 −0.003
1 0 0 111−1 4511.49 4515.14 3.65 0.081
1 0 0 1−111 4513.66 4522.89 9.23 0.205
1 0 0 0020 4643.17 4665.97 22.80 0.491
2 0 0 0000 6569.41 6554.41 −15.00 −0.228
0 1 1 2000 5414.06 5429.79 15.73 0.290
0 0 2 2000 6094.96 6102.83 7.87 0.129
0 2 1 0000 6237.23 6239.11 1.84 0.030
0 0 2 1−111 6284.59 6275.47 −9.12 −0.145
1 1 0 0020 6483.82 6501.33 17.51 0.270
0 1 2 0000 6932.20 6924.14 −8.06 −0.116
0 3 1 0000 8048.00 8041.94 −6.06 −0.075
1 1 1 2000 8728.80 8721.42 −7.38 −0.085
0 2 2 0000 8731.04 8734.55 3.51 0.040
0 0 0 1100 519.37 525.34 5.97 1.149
0 0 0 0011 678.80 680.61 1.81 0.266
0 0 0 221−1 1723.45 1713.24 −10.21 −0.593
0 0 0 1−122 1862.86 1862.52 −0.34 −0.018
0 0 0 0031 2011.22 1998.20 −13.02 −0.647
0 1 0 1100 2369.93 2373.34 3.41 0.144
0 1 0 0011 2528.95 2528.73 −0.22 −0.009
0 0 1 1100 3087.60 3092.39 4.79 0.155
0 0 1 0011 3259.55 3254.18 −5.37 −0.165
1 0 0 0011 3996.74 4008.30 11.56 0.289
0 1 1 1100 4916.80 4931.86 15.06 0.306
0 1 1 0011 5088.09 5093.77 5.68 0.112
0 0 2 11004 5611.21 5604.63 −6.58 −0.117
1 1 0 1100 5694.04 5690.54 −3.50 −0.061

�=fit−obs; δ=fit−obs×100/obs.

De1 = −(A1N
2
1 + 0.9639A2N

2
2 + A123(N

2
1 + 0.9639N2

2 + 0.981784N1N2)

+A12(N
2
1 + 0.9639N2

2 + 1.96357N1N2) + 0.254554λ12N1N2

+0.5λ13N1N3 + 0.405λ23N2N3), or CH is 8.44791 eV,
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Figure 1. The potential energy surface (eV) of stable C2HD with r1(Å) and r2(Å) (r3 → ∞).

De3 = −(0.9639A12N
2
2 + 0.9639A2N

2
2 + A123(N

2
3 + 0.9639N2

2

+0.981784N2N2) + A3N
2
3 + 0.405λ12N1N2 + 0.5λ13N1N3

+0.254554λ23N2N3) or CCD is 15.6464 eV. (12)

From above we can see that the total dissociation energy has the largest value
when the molecule at equilibrium bonds. When we take q2 as a constant, we can
see that the dissociation energy of CH is larger than that of equation (8) and De3

is littler than equation (8). Then we can see q2 has an influence on the dissocia-
tion energy of bond one and bond three.

From figures 1–3, we can see the change of the potential energy surface
with the two coordinates when one bond at equilibrium station. From the fig-
ures, we can see that the potential energy is at its minimum when the three coor-
dinates at equilibrium. Comparing figure 1, with figures 4 and 5, we can see
the potential energy surface has the minimum value when the molecule at equi-
librium, that is to say the molecule is stable when it is at equilibrium and the
potential energies have the same value when they have same distance to the equi-
librium station. From above we can see that the potential energy has the style of
Morse-potential.

4. Concluding remarks

An analytical representation of the potential energy surface for tetratomic,
X2YZ, molecules in terms of AB, BB and CD bond distances has been derived
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Figure 2. The potential energy surface (eV) of stable C2HD with r1(Å) and r3 (Å) (r2 → ∞).

Figure 3. The potential energy surface (eV) of stable C2HD with r3 (Å) and r2 (Å) (r1 → ∞).
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Figure 4. The potential energy surface (eV) of stable C2HD with r1(Å) and r2 (Å) (q3 = 0.6).

Figure 5. The potential energy surface (eV) of stable C2HD with r1 and r2 (q3 = 1.3).
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Figure 6. The expression of HCCD.

and applied. From equations (10)–(12), we can see that the bond two has an
influence on the total dissociation energy and the bond dissociation energy. Work
is also in progress on an extension of the approach to potential energy surfaces
containing a saddle point rather than a well in their midst.
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